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Abstract

We evaluate various sampling strategies for estimating texture derivatives

in a differentiable renderer. We compare texture-space sampling in forward

path tracing for both camera rays and next event estimation. We propose

further optimization-guided and multi-directional sampling strategies.

Differentiable Rendering

In physics-based rendering, photo-realistic images are com-

puted by simulating how light bounces through a scene. Re-

cent work on differentiable rendering [2,3,4] provides meth-

ods for computing image derivatives with respect to inputs

such as object poses, lighting conditions, geometry, and tex-

tures. A differentiable renderer may be used to solve numer-

ical optimization tasks such as recovering scene parameters

from measurements and adding physics-based loss/regular-

ization to machine learning pipelines.

Due to the use of Monte Carlo integration and various im-

portance sampling strategies, many different approaches to

differentiation are viable. We use an attached estimatorwith

multiple importance sampling (MIS), implemented by auto-

matically differentiating a MIS-based path tracer [3].

Figure 1. Differentiation Strategies [4]

Researchers are now designing sampling algorithms tailored to the differen-

tiable setting. Texture-space differentiable rendering [1] maps texture-space

samples into the scene via an object’s inverse surface parameterization.

When connected to the camera, these points become the first bounce of

light paths. Compared to casting rays from the camera itself, the portion of

paths that interact with differentiable parameters is increased. In this work,

we apply the texture space sampling strategy to next-event estimation (NEE):

at each path vertex, we estimate incoming light by sampling directions from

not only the current material and emissive objects, but also via a texture-

space sample on our differentiable target.

Figure 2. Texture-Sampled Camera Rays

Results

We compared optimization behavior under path tracing and direct lighting

with and without texture-space camera rays, as well as path tracing with

texture-space NEE. The optimization goal was to recover a 16x16 texture

applied to a Cornell box wall. At each optimization step, we plot L2 distance

between the reference and rendered image (loss) and distance between the

recovered texture and ground truth (error).

Discussion

We determined that texture-space sampling significantly improves conver-

gence speed, as it only generates rays that potentially intersect the target.

Only rendering direct lighting greatly improves performance, but introduces

bias and fails to recover features lit by indirect paths. Texture-space next

event estimation was found to be only slightly more efficient than traditional

path tracing, but would likely perform better in scenes more heavily reliant

on indirect lighting. Further, our texture-space NEE uses single-sample MIS,

increasing variance compared to the baseline path tracer. Switching to multi-

sample MIS would likely tip the scales towards texture-space NEE.

FutureWork

We look to develop sampling techniques optimized for faster convergence

rather than variance reduction. We are exploring the use of optimization

parameters to guide sample distribution both in camera and texture space:

1. Estimating per-pixel loss would allow for adaptive distribution of samples

to pixels where error is high.

2. When using the ADAM optimizer, per-parameter variance estimates may

be used to importance sample texture-space pixels.

In order to handle indirect specular illumination, NEE is traditionally devel-

oped into bidirectional path tracing. We may similarly extend our strategy

to tridirectional path tracing: by generating three subpaths (camera, target,

emitter), we can importance sample paths involving multi-bounce connec-

tions missed by NEE. Tridirectional tracing would improve sample efficiency

in scenes where (e.g.) the target is viewed indirectly.

Figure 3. Tridirectional Connections
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